Skip to content
- “Klein, Lie, and their early Work on Quartic Surfaces,” Essays on the History of Modern Mathematics: a Festschrift for Umberto Bottazzini, Milano, to appear in 2018.
- “On Franco-German Relations in Mathematics, 1870-1920,” Proceedings of the International Congress of Mathematicians, ICM 2018, Rio de Janeiro, August 2018.
- “Introduction and Commentary for the Klein–Poincaré Correspondence,” in La correspondance entre Henri Poincaré et les mathématiciens, ed. Philippe Nabonnand, Basel: Birkhäuser, scheduled to appear in 2018.
- “À propose de quelques surfaces quartiques spéciales et leur découverte,” in Objets Mathématiques de Institut Henri Poincaré, Paris, Institut Henri Poincaré, 2017, pp. 62-65.
- “Segre, Klein, and the Theory of Quadratic Line Complexes,” From Classical to Modern Algebraic Geometry: Corrado Segre’s Mastership and Legacy, G. Casnati, A. Conte, L. Gatto, L., Giacardi, M. Marchisio, A. Verra, eds., Trends in the History of Science, Trends in the History of Science, Basel: Birkhäuser, 2017, 243-263.
- “Otto Neugebauer and the Historiography of Ancient Mathematics,” Historiography of Mathematics in the Nineteenth and Twentieth Centuries, V. Remmert, M. Schneider, H. K. Sorensen, eds., Trends in the History of Science, Basel: Birkhäuser, 2016, 123-141.
- “From Graz to Göttingen: Neugebauer’s Early Intellectual Journey,” A Mathematician’s Journeys: Otto Neugebauer and Modern Transformations of Ancient Science, Alexander Jones, Christine Proust, and John Steele, eds., Archimedes, New York: Springer, 2016, 1-59.
- “Historical Events in the Background of Hilbert’s Seventh Paris Problem,” in A Delicate Balance: Global Perspectives on Innovation and Tradition in the History of Mathematics, A Festschrift in Honor of Joseph W. Dauben, D.E. Rowe and W.-S. Horng, eds., Trends in the History of Science, Basel: Birkhäuser, 2015, pp. 211-244.
- “Göttingen” (with Erhard Scholz), and “On Stage and Behind the Scenes in Göttingen: Otto Blumenthal, Richard Courant, Emmy Noether, and Paul Bernays,” Transcending Tradition: Jewish Mathematicians in German-Speaking Academic Culture, Birgit Bergmann, Moritz Epple, Ruti Ungar, eds., Heidelberg: Springer-Verlag, 2012, pp. 56-78, 79-87.
- “Disciplinary Cultures of Mathematical Productivity in Germany,” in Publikationsstrategien einer Disziplin: Mathematik in Kaiserreich und Weimarer Republik, ed. Volker Remmert u. Ute Schneider, Mainzer Studien zur Buchwissenschaft 19, Wiesbaden: Harrassowitz, 2008, pp. 9-51.
- “Einstein’s Allies and Enemies: Debating Relativity in Germany, 1916-1920,” in Interactions: Mathematics, Physics and Philosophy, 1860-1930, Boston Studies in the Philosophy of Science, vol. 251, Vincent F. Hendricks, et al., eds., Dordrecht:Springer, 2006, pp. 231-280.
- “I Prolemi di Hilbert e la Matematica del XX Secolo,” Storia della scienza, ed. Sandro Petruccioli, vol. VIII, (Rome: Istituto della Enciclopedia Italiana), 2004, pp. 104-111.
- “Mathematical Schools, Communities, and Networks,” in The Cambridge History of Science, vol. 5 Modern Physical and Mathematical Sciences, ed. Mary Jo Nye, Cambridge: Cambridge University Press, 2003, pp. 113-132.
- “Geometria superiore,” in Storia della scienza, ed. Sandro Petruccioli, 10 vols. (Rome: Istituto della Enciclopedia Italiana), vol. VII (2003), pp. 149-154.
- “Einstein’s Encounters with German Anti-Relativists,” in The Collected Papers of Albert Einstein, vol. 7, Princeton: Princeton University Press, 2002, pp. 101-113.
- “On the Role of Imaginary Elements in 19th-Century Geometry,” in Around Caspar Wessel and the Geometric Representation of Complex Numbers. Proceedings of the Wessel Symposium at The Royal Danish Academy of Sciences and Letters, Copenhagen, August 11-15 1998, ed. Jesper Lützen, (Copenhagen: Royal Danish Academy of Science and Letters), 2001, pp. 271–293.
- “Felix Klein as Wissenschaftspolitiker,” in Changing Images in Mathematics. From the French Revolution to the New Millennium, ed. Umberto Bottazzini and Amy Dahan. London: Routledge, 2001, pp. 69-92.
- “The Calm before the Storm: Hilbert’s early Views on Foundations,” Proof Theory: History and Philosophical Significance, edited by Vincent Hendricks, Dordrecht: Kluwer, 2000, pp. 55-94.
- “The Göttingen Response to General Relativity and Emmy Noether’s Theorems,” The Symbolic Universe. Geometry and Physics, 1890–1930, edited by Jeremy Gray (Oxford: Oxford University Press), 1999, pp. 189-233.
- “Mathematics in Berlin, 1810-1933” and “Einstein in Berlin,” in Mathematics in Berlin, ed. H.G.W. Begehr, H. Koch, J. Kramer, N. Schappacher, and E.-J. Thiele, Basel: Birkhäuser, 1998, pp. 9-26, 117-126.
- Articles on “Ludwig Bieberbach,” “David Hilbert,” “Felix Klein,” “Edmund Landau,” and “Mathematics,” in Modern Germany. An Encyclopedia of History, People, and Culture, 1871-1990, 2 vols., ed. Dieter K. Buse and Jürgen C. Doerr (New York \& London: Garland Press), 1998, vol. 1: pp. 108-109, 466-467, 558-559; vol. 2: pp. 582, 641-642.
- “In Search of Steiner’s Ghosts: Imaginary Elements in Nineteenth-Century Geometry,” Le nombre une hydre \`a n visages, ed. Dominique Flament, (Paris: éditions de la Maison des Sciences de L’Homme), 1997, pp. 193-208.
- “New Trends and Old Images in the History of Mathematics,” Vita Mathematica. Historical Research and Integration with Teaching, ed. Ronald Calinger, MAA Notes Series, vol. 40
(Washington, D.C.: Mathematical Association of America), 1996, pp. 3-16.
- “The Philosophical Views of Klein and Hilbert,” in The Intersection of History and Mathematics, ed. Sasaki Chikara, Sugiura Mitsuo, Joseph W. Dauben, Science Networks, vol. 15 (Proceedings of the 1990 Tokyo Symposium on the History of Mathematics), (Basel: Birkäuser, 1994), pp. 187-202.
- “Klein, Lie, and the Erlanger Programm,” 1830-1930: A Century of Geometry. Epistemology, History and Mathematics, ed. L. Boi, D. Flament, and J.-M. Salanskis (Heidelberg: Springer, 1992), 45–54.
- “Klein, Mittag-Leffler, and the Klein-Poincaré Correspondence of 1881-1882,” Amphora. Festschrift für Hans Wussing, 1992, 598-618.
- “Klein, Lie, and the Geometric Background of the Erlangen Program,” in D. E. Rowe and J. McCleary, eds., The History of Modern Mathematics: Ideas and their Reception, vol. 1, Boston: Academic Press, 1989, 209-273.
- “Felix Klein, David Hilbert, and the Göttingen Mathematical Tradition,” Kathryn Olesko, ed., Science in Germany: The Intersection of Institutional and Intellectual Issues, Osiris, 5(1989), 186-213.