Mathematics in Göttingen

  • (Editor with Volkmar Felsch), Otto Blumenthal, Briefe und Schriften, 1922–1944, Band II, Mathematik im Kontext, Heidelberg: Springer, to appear in 2018.
  • (Editor), Otto Blumenthal, Briefe und Schriften, 1897–1922, Band I, Mathematik im Kontext, Heidelberg: Springer, to appear in 2017.
  • A Richer Picture of Mathematics: the Göttingen Tradition and Beyond (Essays from The Mathematical Intelligencer, 1984-2016), New York: Springer, to appear in 2017.
  • “Göttingen’s SUB as Repository for the Papers of Distinguished Mathematicians,” Newsletter of the European Mathematical Society, 101(Sept. 2016): 39-44.
  • “Looking Back on Gauss and Gaussian Legends: Answers to the Quiz from MI, 37(4),” Mathematical Intelligencer, 38(4) (2016): 39-45.
  • “From Graz to Göttingen: Neugebauer’s Early Intellectual Journey,” A Mathematician’s Journeys: Otto Neugebauer and Modern Transformations of Ancient Science, Alexander Jones, Christine Proust, and John Steele, eds., Archimedes, New York: Springer, 2016, 1-59.
  • “Historical Events in the Background of Hilbert’s Seventh Paris Problem,” in A Delicate Balance: Global Perspectives on Innovation and Tradition in the History of Mathematics, A Festschrift in Honor of Joseph W. Dauben, D.E. Rowe and W.-S. Horng, eds., Trends in the History of Science, Basel: Birkhäuser, 2015, pp. 211-244.
  • “Transforming Tradition: Richard Courant in Göttingen,” Mathematical Intelligencer, 37(1) (2015): 20–29.
  • “Mathematics Made in Germany: On the Background to Hilbert’s Paris Lecture,” Mathematical Intelligencer, 35 (3) (2013), 9-20.
  • “Göttingen” (with Erhard Scholz), and “On Stage and Behind the Scenes in Göttingen: Otto Blumenthal, Richard Courant, Emmy Noether, and Paul Bernays,” Transcending Tradition: Jewish Mathematicians in German-Speaking Academic Culture, Birgit Bergmann, Moritz Epple, Ruti Ungar, eds., Heidelberg: Springer-Verlag, 2012, pp. 56-78, 79-87.
  • (With Tilman Sauer) “Otto Blumenthal über David Hilbert,” Mitteilungen der Deutschen Mathematiker-Vereinigung, 20(2012): 190-191.
  • “Otto Neugebauer and Richard Courant: On Exporting the Göttingen Approach to the History of Mathematics,” Mathematical Intelligencer, 34 (2) (2012), 29-37.
  • “Felix Klein, Adolf Hurwitz, and the `Jewish Question’ in German Academia,” Mathematical Intelligencer, 29(2)(2007), 18-30.
  • “Hilbert’s Early Career: Encounters with Allies and Rivals,” Mathematical Intelligencer, 27(1)(2005), 72-82.
  • “Making Mathematics in an Oral Culture: Göttingen in the Era of Klein and Hilbert,”Science in Context, 17(1/2) 2004: 85-129.
  • “From Königsberg to Göttingen: A Sketch of Hilbert’s Early Career,” Mathematical Intelligencer, 25(2) (2003), 44-50.
  • “Hermann Weyl, the Reluctant Revolutionary,” Mathematical Intelligencer, 25(1) (2003), 61-70.
  • “Felix Klein as Wissenschaftspolitiker,” in Changing Images in Mathematics. From the French Revolution to the New Millennium, ed. Umberto Bottazzini and Amy Dahan.
    London: Routledge, 2001, pp. 69-92.
  • “The Calm before the Storm: Hilbert’s early Views on Foundations,” Proof Theory: History and Philosophical Significance, edited by Vincent Hendricks, Dordrecht: Kluwer, 2000, pp. 55-94.
  • “The Philosophical Views of Klein and Hilbert,” in The Intersection of History and Mathematics, ed. Sasaki Chikara, Sugiura Mitsuo, Joseph W. Dauben, Science Networks, vol. 15 (Proceedings of the 1990 Tokyo Symposium on the History of Mathematics), (Basel: Birkäuser, 1994), pp. 187-202.
  • “Klein, Mittag–Leffler, and the Klein-Poincaré Correspondence of 1881–1882,” Amphora. Festschrift für Hans Wussing, 1992, 598–618.
  • (Editor), David Hilbert. Natur und mathematisches Erkennen. Vorlesungen, gehalten 1919-1920 in Göttingen. (Original edition of Hilbert’s 1919-1920 lectures with an introductory essay), (Basel: Birkhäuser), 1992.
  • “Felix Klein, David Hilbert, and the Göttingen Mathematical Tradition,” Kathryn Olesko, ed., Science in Germany: The Intersection of Institutional and Intellectual Issues, Osiris, 5(1989), 186-213.
  • “Der Briefwechsel Sophus Lie-Felix Klein, eine Einsicht in ihre persönlichen und wissenschaftlichen Beziehungen,” NTM. Schriftenreihe für Geschichte der Naturwissenschaften,
    Technik und Medizin
    , 25(1) (1988), 37-47.
  • “An Interview with Dirk Jan Struik,” NTM. Schriftenreihe für Geschichte der Naturwissenschaften, Technik und Medizin, 25(2)(1988), 5–23; shorter version in The Mathematical Intelligencer, 11(1)(1989), 14–26; Czech translation of NTM interview in Pokroky Matematiky Fyziky & Astronomie, 35(3) (1990), 136–151.
  • “Gauss, Dirichlet, and the Law of Biquadratic Reciprocity,” The Mathematical Intelligencer, 10(2) (1988), 13–25.
  • “‘Jewish Mathematics’ at Göttingen in the Era of Felix Klein,” Isis, 77(1986), 422–449.